Abstract
A direct method for aerodynamic shape optimization based on the use of Bezier spline approximation is proposed. The method is tested as applied to the optimization of the supersonic part of an axisymmetric de Laval nozzle. The optimization results are compared with the exact solution obtained by the control contour method (variational nozzle) and with nozzles constructed using another direct method, namely, local linearization. It is shown that both direct optimization methods can be used on rather coarse grids without degrading the accuracy of the solution. The optimization procedure involves the isoperimetric condition that the surface area of the nozzle is given and fixed, which prevents the use of the control contour method. Optimization with allowance for viscosity is performed using the method. For fairly short maximum possible nozzle lengths in the range of Reynolds numbers under consideration, it is shown that allowance for viscosity does not improve the nozzle shape produced by optimization based on the Euler equations. The role of viscosity is reduced to the determination of an optimal length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational Mathematics and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.