Abstract

This article presents mathematical models to simulate coupled heat and mass transfer during convective drying of food materials using three different effective diffusivities: shrinkage dependent, temperature dependent, and the average of those two. Engineering simulation software COMSOL Multiphysics was utilized to simulate the model in 2D and 3D. The simulation results were compared with experimental data. It is found that the temperature-dependent effective diffusivity model predicts the moisture content more accurately at the initial stage of the drying, whereas the shrinkage-dependent effective diffusivity model is better for the final stage of the drying. The model with shrinkage-dependent effective diffusivity shows evaporative cooling phenomena at the initial stage of drying. This phenomenon was investigated and explained. Three-dimensional temperature and moisture profiles show that even when the surface is dry, the inside of the sample may still contain a large amount of moisture. Therefore, the drying process should be dealt with carefully; otherwise, microbial spoilage may start from the center of the dried food. A parametric investigation was conducted after validation of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call