Abstract

The current recreational water quality criteria using growth-based measurements of fecal indicator bacteria (FIB) concentration have their limitations for swimmer protection. To evaluate the possible use of enteric viruses as an improved indicator of human sewage contamination in recreational waters for enhanced health risk assessment, human norovirus (huNoV) was tested as a model in this study. To establish a highly sensitive protocol for effective huNoV detection in waters, 16 published and newly designed reverse transcription polymerase chain reaction (RT-PCR) primer pairs specific for huNoV genogroup I (GI) and genogroup II (GII) were comparatively evaluated side-by-side using single sources of huNoV RNA stock extracted from local clinical isolates. Under optimized conditions, these RT-PCR protocols shared a very different pattern of detection sensitivity for huNoV. The primer sets COG2F/COG2R and QNIF4/NV1LCR were determined to be the most sensitive ones for huNoV GII and GI, respectively, with up to 10 5- and 10 6-fold more sensitive as compared to other sets tested. These two sensitive protocols were validated by positive detection of huNoV in untreated and treated urban wastewater samples. In addition, these RT-PCR protocols enabled detection of the prevalence of huNoV in 5 (GI) and 10 (GII) of 16 recreational water samples collected around the island of O’ahu, which was confirmed by DNA sequencing and sequence analysis. Findings from this study support the possible use of enteric viral pathogens for environmental monitoring and argue the importance and essentiality for such monitoring activity to ensure a safe use of recreational waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.