Abstract

One of the major problems with any robotic vehicle is inefficient use of available power. This research explores in detail the locomotion, power dynamics and performance of a skid steered robotic vehicle and develops techniques to derive efficient design parameters of the vehicle in order to achieve optimal performance by minimizing the power losses/consumption. Three categories of design variables describe the vehicle and its dynamics; variables that describe the vehicle, variables that describe the surface on which it runs and variables that describe the vehicle’s motion. Two major constituent components of power losses/consumption of the vehicle are − losses in skid steer turning, and losses in rolling. Our focus is on skid steering, we present a detailed analysis of skid steering for different turning modes; elastic mode steering, half-slip steering, skid turns, low radius turns, and zero radius turns. Each of the power loss components is modeled from physics in terms of the design variables. The effect of design variables on the total power losses/consumption is then studied using simulated data for different types of surfaces i.e. hard surfaces and muddy surfaces. Finally, we make suggestions about efficient vehicle design choices in terms of the design variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.