Abstract
It has been proposed that the exponential decay and subsequent power law saturation of out-of-time-order correlation functions can be universally described by collective ‘scramblon’ modes. We develop this idea from a path integral perspective in several examples, thereby establishing a general formalism. After reformulating previous work on the Schwarzian theory and identity conformal blocks in two-dimensional CFTs relevant for systems in the infinite coupling limit with maximal quantum Lyapunov exponent, we focus on theories with sub-maximal chaos: we study the large-q limit of the SYK quantum dot and chain, both of which are amenable to analytical treatment at finite coupling. In both cases we identify the relevant scramblon modes, derive their effective action, and find bilocal vertex functions, thus constructing an effective description of chaos. The final results can be matched in detail to stringy corrections to the gravitational eikonal S-matrix in holographic CFTs, including a stringy Regge trajectory, bulk to boundary propagators, and multi-string effects that are unexplored holographically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.