Abstract

Hot QCD medium effects have been studied in the effective quasi-particle description of quark-gluon plasma. This model encodes the collective excitation of gluons and quarks/anti-quarks in the thermal medium in terms of effective quarks and gluons having non-trivial energy dispersion relation. The present investigation involves the extension of the effective quasi-particle model in strong magnetic field limit. Realizing, hot QCD medium in the strong magnetic field as an effective grand canonical system in terms of the modified quark, anti-quark and gluonic degrees of freedom, the thermodynamics has been studied. Further, the Debye mass in hot QCD medium has to be sensitive to the magnetic field, and subsequently the same has been observed for the effective hot QCD coupling. As an implication, electrical conductivity (longitudinal) has been studied within an effective kinetic theory description of hot QCD in the presence of the strong magnetic field. The hot QCD equation of state (EoS), dependence entering through the effective coupling and quasi-parton distribution function, found to have a significant impact on the longitudinal electrical conductivity in strong magnetic field background.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call