Abstract
Chronic sensory loss is a common and undertreated consequence of many forms of neurological injury. Emerging evidence indicates that vagus nerve stimulation (VNS) delivered during tactile rehabilitation promotes recovery of somatosensation. Here, we characterize the amount, intensity, frequency, and duration of VNS therapy paradigms to determine the optimal dosage for VNS-dependent enhancement of recovery in a model of peripheral nerve injury (PNI). Rats underwent transection of the medial and ulnar nerves in the forelimb, resulting in chronic sensory loss in the paw. Eight weeks after injury, rats were implanted with a VNS cuff and received tactile rehabilitation sessions consisting of repeated mechanical stimulation of the previously denervated forepaw paired with short bursts of VNS. Rats received VNS therapy in 1 of 6 systematically varied dosing schedules to identify a paradigm that balanced therapy effectiveness with a shorter regimen. Delivering 200 VNS pairings a day 4 days a week for 4 weeks produced the greatest percent improvement in somatosensory function compared to any of the 6 other groups (One Way analysis of variance at the end of therapy, F[4 70] P = .005). Our findings demonstrate that an effective VNS therapy dosage delivers many stimulations per session, with many sessions per week, over many weeks. These results provide a framework to inform the development of VNS-based therapies for sensory restoration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.