Abstract
Water pollution by antibiotics is a serious and growing problem. Given this challenge, a free-standing three-dimensional (3D) reduced graphene oxide foam supported copper oxide nanoparticles (3D-rGO-CuxO) was synthesized using GO as a precursor and applied as an efficient persulfate activator for tetracycline (TC) degradation. The influences of CuxO mass, solution pH, persulfate dosage, and common anions on the TC degradation were investigated in detail. Analytical techniques indicated that the 3D-rGO-CuxO showed a cross-linking three-dimensional network structure, and CuxO particles with irregular shapes were uniformly loaded on graphene pore walls. The XPS and Auger spectra of Cu confirmed that Cu2O was the main component in solid copper compounds. The addition of CuxO was vitally important for the activation of the oxidation system, and the removal rate reached 98% with a CuxO load of 7:1. The pH showed little influence on the activation effect on TC degradation. For common anions, Cl- and CO32- had little influence on the system, while humic acid had a great inhibitory effect. The EPR test and quenching experiment revealed that the active substances in the oxidative degradation process mainly include SO4-·, ·OH, 1O2, and reactive Cu(III). Additionally, the 3D-rGO-CuxO material proved highly stable according to the replicated test results and was promising for the remediation of antibiotic-contaminated water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.