Abstract

2,4-Dihydroxybenzophenone (BP-1), a typically known derivative of the benzophenone-type UV filter, has been frequently detected in aqueous environments and poses a potential risk to human health and the entire ecosystem. In this study, an effective advanced oxidation technique using zero-valent iron powder (Fe0)-activated persulfate (PS) was used for the degradation of BP-1. The effects of several experimental parameters, including Fe0 dosages, PS dosages, pH, and common natural water constituents, were systematically investigated. The BP-1 degradation efficiency was enhanced by increasing the Fe0 and PS dosages and decreasing the solution pH. The presence of different concentrations of humic acid (HA) could inhibit BP-1 removal, while the addition of various cations and anions had different effects on the degradation. Moreover, the degradation of BP-1 in five water matrices was also compared, and the removal rates followed the order of ultrapure water > tap water > secondary clarifier effluent > river water > synthetic water. Thirteen oxidation products were identified by liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) analysis, and five possible degradation pathways were proposed. The addition reactions initiated by HO and SO4−, as well as single-electron coupling reactions and ring-closing reactions, were further supported by density functional theory (DFT) calculations. Assessment of toxicity of intermediates of the oxidation of BP-1 suggested decreased toxicity from the parent contaminant. The present work illustrates that BP-1 could be efficiently degraded in the Fe0/PS system, which may provide new insights into the removal of benzophenones in water and wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.