Abstract

The amount of data is increasing explosively, and many in-memory-based database management systems have been developed to efficiently manage data in real time. However, these in-memory databases mainly use DRAM main memory, which raises problems due to price and energy consumption. To mitigate these problems, we propose a hybrid main memory structure based on DRAM and NAND flash that is cheaper and consumes less energy than DRAM. The proposed system incorporates a prefetching mechanism in last-level cache based on regression analysis to handle irregular memory access from the in-memory application and a migration technique based on clustering between DRAM and NAND flash to mitigate NAND flash slow access latency, which could otherwise significantly degrade system performance. We experimentally confirmed approximately 58% and 51% execution time and energy improvement compared with using DRAM alone. We also compared existing prefetching models without migration to evaluate the proposed prefetching and migration techniques and showed approximately 24% and 23% improvement for execution time and an energy consumption, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call