Abstract

A semi-microscopic scaling-field theory is developed for crossover phenomena near critical and tricritical points. The theory is based on a renormalization-group description of a model with two competing fixed points (such as a critical and a tricritical fixed point) in terms of scaling fields. The coupled nonlinear differential equations for scaling fields are truncated such as to preserve the physics essential for crossover phenomena. The approach allows the explicit calculation of thermodynamic functions for (i) tricritical systems and (ii) critical systems with an irrelevant scaling field. We obtain, for example, an explicit expression for the scaling function of the susceptibility, which describes the crossover from the tricritical to the critical region. The idea of "flow diagrams" in the scaling-field space is used to characterize crossover phenomena globally in the whole critical region. The concept of asymptotic critical exponents is generalized and effective critical exponents are introduced as logarithmic derivatives of thermodynamic quantities with respect to experimental fields and scaling fields, respectively. By using the method of effective exponents the size of the crossover region between regions of different asymptotic critical behavior is estimated. For the susceptibility, the width of the crossover region in decades of the effective temperature variable is roughly equal to the inverse of the crossover exponent. In the case of a critical system with a slow transient the asymptotic critical exponent is only reached extremely close to the critical point (unless the amplitude of the transient vanishes). It might then be impossible to determine the asymptotic exponent experimentally or by conventional series-expansion techniques, and an analysis of the data in terms of effective exponents is the alternative. The scaling-field approach is applied to three systems with crossover phenomena: (i) the model for tricritical systems with molecular-field tricritical exponents, (ii) the Ashkin-Teller model in three dimensions, and (iii) a model for phase transitions with Fisher exponent renormalization due to a constraint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call