Abstract
The calculation of the electrical charge transport properties of alkanes C n H 2n S 2 with (n = 4-11) was performed to understand the odd-even effect on its current-voltage response. The extended molecule and broadband limit models were used to describe the molecular junction and covalent coupling with the electrodes. It was shown that among the participating molecular orbitals, HOMO and HOMO-1 are the ones with the most charge transport contribution. Moreover, the odd-even effect is caused by the alternation of the eigenvalues of some frontier orbitals as a function of the number of carbons, especially the HOMO that dominates the electrical transport. It could also be noted that when the current is analyzed outside the resonance, the relationship with the number of carbons exponentially decays, confirming the reports in the literature. To the best of our knowledge, a first principle study of the odd-even effect in symmetric systems composed by linear saturated carbon chains covalently coupled to electrodes has not been reported yet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.