Abstract
Abstract We prove an effective estimate with a power saving error term for the number of square-tiled surfaces in a connected component of a stratum of quadratic differentials whose vertical and horizontal foliations belong to prescribed mapping class group orbits and which have at most L squares. This result strengthens asymptotic counting formulas in the work of Delecroix, Goujard, Zograf, Zorich, and the author.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.