Abstract

We report on a study of the microstructural and photoluminescent properties of ZnO/CuO multilayered films. Multilayered ZnO/CuO thin films were deposited on amorphous SiO2/Si substrates by a pulsed laser technique and their microstructural and optical properties were characterized by transmission electron microscopy (TEM) and photoluminescence spectroscopy. TEM and XRD analyses of annealed ZnO/CuO films reveal the formation of multiple crystallographic defects and modification of the dominant growth plane, indicating effective doping of Cu atoms into the ZnO lattice. Consequently, near-band-edge emission in ZnO can be controlled through the number of CuO layers. Redshift of the near-band-edge emission peak from 385 nm up to 422 nm is achieved by increasing the number of CuO layers up to a certain number, above which a downward shift is observed. The results demonstrate that the emission properties of ZnO can be modified and precisely controlled by incorporation of CuO thin layers as a Cu-doping source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.