Abstract
The large magneto-resistance (MR) effect produced by electric control of the magnetic state for van der Waals (vdW) heterostructures composed of vdW intrinsic magnets holds great significance for low-dissipation spintronic devices. Our first-principles calculations reveal that the proposed monolayer WV2N4 is a ferromagnetic (FM) metal with two magnetic V atomic layers, and the interlayer magnetic coupling between two V atomic layers can be switched from FM to antiferromagnetic coupling by applying a small compressive strain. Interestingly, a large MR ratio of 253% is achieved in the proposed graphite/monolayer WV2N4/graphite vdW heterostructure using a −1.5% compressive strain. Combining the strain-induced change in magnetism of monolayer WV2N4 and the graphite/monolayer WV2N4/graphite vdW heterostructure with the inverse piezoelectricity of piezoelectric materials, a feasible strategy is proposed to achieve electric control of the interlayer magnetic coupling of monolayer WV2N4 in the graphite/monolayer WV2N4/graphite vdW heterostructure clamped by piezoelectric materials by utilizing the inverse piezoelectricity, thereby generating a large MR ratio in the graphite/monolayer WV2N4/graphite vdW heterostructure clamped by the piezoelectric material. Our work presents a promising avenue for developing energy-efficient spintronic devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.