Abstract

Antibiotics have been widely used to treat several infectious diseases. However, the overuse of antibiotics has promoted the emergence and spread of antibiotic resistant bacteria (ARB) in various fields, including the food industry. In this study, the antimicrobial efficacies of two conventional sterilization methods, mild heat, and sonication, were evaluated and optimized to develop a new strategy against ARB. Simultaneous mild heat and sonication (HS) treatment led to a significant reduction in viable cell counts, achieving a 5.58-log reduction in 4 min. However, no remarkable decrease in viable cell counts was observed in individually treated groups. Interestingly, the release of antibiotic resistance genes (ARGs) increased in a time-dependent manner in the heat-treated and HS-treated groups. The inactivation levels of ARGs increased as the HS treatment time increased from 2 to 8 min, and most ARGs were degraded after 8 min. In contrast, no significant inactivation of ARGs was observed in the heat-treated and sonication-treated groups after 8 min. These results reveal the synergistic effect of the combination treatment in controlling not only ARB but also ARGs. Finally, on applying this newly developed combination treatment to fresh food (cherry tomato and carrot juice), 3.97- and 4.28-log microbial inactivation was achieved, respectively. In addition, combination treatment did not affect food quality during storage for 5 days. Moreover, HS treatment effectively inactivated ARGs in fresh food systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.