Abstract

A geometry-independent effective model for the contact self-energies is proposed to calculate the quantum conductance of patterned graphene devices using Green's functions. A Corbino disk, being the simplest device where the contacts cannot be modeled as semi-infinite ribbons, is chosen to illustrate this approach. This system's symmetry allows an analytical solution against which numerical calculations on the lattice can be benchmarked. The effective model perfectly describes the conductance of Corbino disks at low-to-moderate energies, and is robust against the size of the annular device region, the number of atoms on the edge, external magnetic fields, or electronic disorder. The contact model considered here affords an expedient, flexible, and geometry-agnostic approach that easily allows the consideration of device dimensions encompassing several million atoms, and realistic radial dimensions of a few hundreds of nanometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.