Abstract
We consider the effective Lagrangian due to the exchange of heavy Kaluza-Klein (KK) tensor graviton and scalar radion states in a stabilized Randall-Sundrum model (RS1) and compute explicitly the corresponding effective coupling constants. The Drell-Yan lepton pair production at the Tevatron and the LHC is analyzed in two situations, when the first KK resonance is too heavy to be directly detected at the colliders, and when the first KK resonance is visible but other states are still too heavy. In the first case the effective Lagrangian reduces to a contact interaction of Standard Model (SM) particles, whereas in the second case it includes a coupling of SM particles to the first KK mode and a contact interaction due to the exchange of all the heavier modes. It is shown that in both cases the contribution from the invisible KK tower leads to a modification of final particles distributions. In particular, for the second case a nontrivial interference between the first KK mode and the rest KK tower takes place. Expected 95% C.L. limits for model parameters for the Tevatron and the LHC are given. The numerical results are obtained by means of the CompHEP code, in which all new effective interactions are implemented providing a tool for simulation of corresponding events and a more detailed analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.