Abstract
ABSTRACT In recent years, the regression dynamic causal modelling (rDCM) method was introduced as a new version of dynamic causal modelling (DCM) to derive effective connectivity in whole-brain networks for functional magnetic resonance imaging (fMRI) data. In this research, we used data obtained while applying the stimulation of audio movie comprised different emotional states. We applied this method to two networks consisting of ten auditory and forty-four regions, respectively. This method was used to study effective connections between emotional states and represent the distinction between emotions. Finally, significant effective connections were found in emotional processing and auditory regions, and between visual and memory-related regions. We also observed the distinctive connections between the pair of emotions in both models. The greatest number of significant distinctions in the coupling between regions was represented in happiness-anger and happiness-fear for the whole-brain model and happiness-sadness, sadness-love, and anger-love for the auditory model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.