Abstract

How the human brain represents millisecond unit of time is far from clear. A recent neuroimaging study revealed the existence in the human premotor cortex of a topographic representation of time i.e., neuronal units selectively responsive to specific durations and topographically organized on the cortical surface. By using high resolution functional Magnetic Resonance Images here, we go beyond this previous work, showing duration preferences across a wide network of cortical and subcortical brain areas: from cerebellum to primary visual, parietal, premotor and prefrontal cortices. Most importantly, we identify the effective connectivity structure between these different brain areas and their duration selective neural units. The results highlight the role of the cerebellum as the network hub and that of medial premotor cortex as the final stage of duration recognition. Interestingly, when a specific duration is presented, only the communication strength between the units selective to that specific duration and to the neighboring durations is affected. These findings link for the first time, duration preferences within single brain region with connectivity dynamics between regions, suggesting a communication mode that is partially duration specific.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call