Abstract

ObjectiveTo characterize the effective connectivity (EC) between the emotion and motor brain regions in patients with psychogenic nonepileptic seizures (PNES), based on resting-state spectral dynamic causal modeling (spDCM). MethodsTwenty-three patients with PNES and twenty-five healthy control (HC) subjects underwent resting-state fMRI scanning. The coupling parameters indicating the causal interactions between eight brain regions associated with emotion, executive control, and motion were estimated for both groups, using resting-state fMRI spDCM. ResultsCompared to the HC subjects, in patients with PNES: (i) the left insula (INS) and left and right inferior frontal gyri (IFG) are more inhibited by the amygdala (AMYG), anterior cingulate cortex (ACC), and precentral gyrus (PCG); (ii) the left AMYG has greater inhibitory effects on the INS, IFG, dorsolateral prefrontal cortex (DLPFC), PCG, and supplementary motor area (SMA); (iii) the left ACC has more inhibitory effects on the INS and IFG; (iv) the right ACC is more inhibited by the INS and IFG, and has a less inhibitory effect on the SMA and PCG; and (v) the left caudate (CAU) had increased inhibitory effects on the AMYG and IFG and a more excitatory effect on the SMA. ConclusionOur results suggest that in patients with PNES, the emotion-processing regions have inhibitory effects on the executive control areas and motor regions. Our findings may provide further insight into the influence of emotional arousal on functional movements and the underlying mechanisms of involuntary movements during functional seizures. Furthermore, they may suggest that emotion regulation through cognitive behavioral psychotherapies can be a potentially effective treatment modality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call