Abstract

Perforated baffle plates are used as an anti-slosh mechanism in various fields owing to the need for slosh suppression and weight reduction. However, there is an uncertainty in the selection of configuration of perforated baffle plate due to the several influencing parameters for slosh damping efficiency. Therefore, the present study focuses on the development of an efficient slosh damping configuration for the perforated baffle plate. For this, nonlinear dynamic analysis under seismic ground motions with different PGA/PGV ratios has been carried out in the time domain using the concepts of Computational Fluid Dynamics (CFD) in the numerical models of liquid tanks with perforated baffle plates of different configurations. The response of the system under impulsive and convective modes is analysed by observing the free surface elevation, hydrodynamic pressure, turbulence kinetic energy and turbulence eddy dissipation as the response parameters. The study developed an effective baffle configuration for efficient slosh damping, considering the various response parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.