Abstract

Triply periodic minimal surfaces (TPMS) are employed to create novel cellular materials. They include Schwarz Primitive, Schoen IWP, Neovius, Schoen Gyroid, Fischer-Koch S, and Schwarz CLP geometries. Unit cells are studied using a finite element method with periodic boundary conditions in order to predict effective electrical/thermal conductivities and elastic moduli of these TPMS-based foams. The conductivities vary linearly with relative density. The conductivities of the Primitive-, IWP-, Neovius-, Gyroid-, and S-foams are very close to each other. The conductivity of the CLP-foam needs to be described by two values because of its geometrical asymmetry while the other foams are found to be isotropic when their conductivities are studied. The uniaxial, shear and bulk moduli, Poisson ratio and elastic anisotropy of these TPMS-foams are also computed and compared. When the mechanical properties are investigated, the CLP-foam is found to have highest anisotropy among the considered TPMS-foams. In addition, the Primitive-foam possesses highest shear modulus while the Neovius, IWP-, and Primitive-foams possess highest bulk moduli among the TPMS-foams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.