Abstract
Community search (CS) enables personalized community discovery and has found a wide spectrum of emerging applications such as setting up social events and friend recommendation. While CS has been extensively studied for conventional homogeneous networks, the problem for heterogeneous information networks (HINs) has received attention only recently. However, existing studies suffer from several limitations, e.g., they either require users to specify a meta-path or relational constraints, which pose great challenges to users who are not familiar with HINs. To address these limitations, in this paper, we systematically study the problem of CS over large star-schema HINs without asking users to specify these constraints; that is, given a set Q of query vertices with the same type, find the most-likely community from a star-schema HIN containing Q , in which all the vertices are with the same type and close relationships. To capture the close relationships among vertices of the community, we employ the meta-path-based core model, and maximize the number of shared meta-paths such that each of them results in a cohesive core containing Q. To enable efficient CS, we first develop online algorithms via exploiting the anti-monotonicity property of shared meta-paths. We further boost the efficiency by proposing a novel index and an efficient index-based algorithm with elegant pruning techniques. Extensive experiments on four real large star-schema HINs show that our solutions are effective and efficient for searching communities, and the index-based algorithm is much faster than the online algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.