Abstract

IntroductionMultiple sclerosis (MS) is the most common inflammatory demyelinating disorder of the central nervous system (CNS). Minocycline ameliorates the clinical severity of MS and exhibits antiinflammatory, neuroprotective activities, and good tolerance for long-term use, whereas it is toxic to the CNS. Recently, the immunomodulation and neuroprotection capabilities of human bone marrow mesenchymal stem cells (hBM-MSCs) were shown in experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated whether the combination of hBM-MSCs and a low-dose minocycline could produce beneficial effects in EAE mice.MethodsThe sensitivity of hBM-MSCs to minocycline was determined by an established cell-viability assay. Minocycline-treated hBM-MSCs were also characterized with flow cytometry by using MSC surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by using immunization with MOG35-55. Immunopathology assays were used to detect the inflammatory cells, demyelination, and neuroprotection. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct Th1 and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). terminal dUTP nick-end labeling (TUNEL) staining was performed to elucidate the cell apoptosis in the spinal cords of EAE mice.ResultsMinocycline did not affect the viability, surface phenotypes, or differentiation capacity of hBM-MSCs, while minocycline affected the viability of astrocytes at a high dose. In vivo efficacy experiments showed that combined treatment, compared to the use of minocycline or hBM-MSCs alone, resulted in a significant reduction in clinical scores, along with attenuation of inflammation, demyelination, and neurodegeneration. Moreover, the combined treatment with hBM-MSCs and minocycline enhanced the immunomodulatory effects, which suppressed proinflammatory cytokines (IFN-γ, TNF-α) and conversely increased anti-inflammatory cytokines (IL-4, IL-10). In addition, TUNEL staining also demonstrated a significant decrease of the number of apoptotic cells in the combined treatment compared with either treatment alone.ConclusionsThe combination of hBM-MSCs and minocycline provides a novel experimental protocol to enhance the therapeutic effects in MS.

Highlights

  • Multiple sclerosis (MS) is the most common inflammatory demyelinating disorder of the central nervous system (CNS)

  • In vivo efficacy experiments showed that combined treatment, compared to the use of minocycline or hBM-MSCs alone, resulted in a significant reduction in clinical scores, along with attenuation of inflammation, demyelination, and neurodegeneration

  • terminal dUTP nick-end labeling (TUNEL) staining demonstrated a significant decrease of the number of apoptotic cells in the combined treatment compared with either treatment alone

Read more

Summary

Introduction

Multiple sclerosis (MS) is the most common inflammatory demyelinating disorder of the central nervous system (CNS). We evaluated whether the combination of hBM-MSCs and a low-dose minocycline could produce beneficial effects in EAE mice. Minocycline is a semisynthetic tetracycline analogue suitable for treatment of CNS disorders because it is capable of penetrating the blood–brain barrier and has antiinflammatory and antiapoptotic activities. It is effective in delaying progression in numerous neurodegenerative diseases. Minocycline exerts neuroprotective effects in EAE by protecting axons from demyelination; attenuating neuronal death [4]; and modulating immune differentiation from a Th1 toward a Th2 phenotype, thereby reducing T-cell infiltration into the spinal cord [2,5]. It is necessary to find a combined therapy that requires a low dose of minocycline

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.