Abstract

In this paper, a closed form analytical approach for a recently presented kinetic model proposed in Milani and Milani (Polym Test, 2013, under review) to interpret NR sulphur vulcanization in presence of either experimental or surrogate rheometer curves is proposed. The model has kinetic base and is aimed at predicting, by means of a very refined approach, the vulcanization degree of NR vulcanized with sulphur. It needs as input only rheometer curves to fit and provides as output kinetic constants of the single reactions occurring during the crosslink process. In Milani and Milani (Polym Test, 2013, under review) a cure chemical scheme constituted by five reactions occurring in series and parallel was adopted. The chemical scheme, translated mathematically into a differential equations system, was suitably re-arranged and a single analytical equation was derived, representing rubber crosslink degree evolution upon time. The main drawback of such procedure is that the five kinetic constants corresponding to each reaction were determined through a standard non-linear least squares procedure, trying to minimize the deviation of the analytical cure curve from experimental data. Such a limitation is here superseded and a major improvement is proposed utilizing (1) a closed form solution which does not require any optimization algorithm and (2) finding analytically a starting point for the unknown kinetic constants, very near to the actual solution and thus very convenient for a successive least squares minimization. In the model, it is shown how the analytical condition deduced from the scorch point (second derivative of the rheometer curve equal to zero) and two further conditions, e.g. the time at 90 % of vulcanization and the reversion percentage, allow the simple direct evaluation of kinetic constants, providing a closed form analytical formula to predict well the state of cure of the rubber under consideration. To assess the results obtained with the model proposed, several examples on two different NRs are discussed. The approach proved to be extremely robust and much faster when compared with the model proposed by Milani and Milani (Polym Test, 2013, under review).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.