Abstract

PurposeTo investigate the scope of the effective clinical application of Monte Carlo (MC)-based independent dose verification software for helical tomotherapy. MethodsDoseCHECK was selected as the MC-based dose calculation software. First, the dose calculation accuracy of DoseCHECK was evaluated with film and chamber measurements in a water-equivalent phantom. Second, the dose calculation accuracy was examined in several heterogeneous materials. Finally, dosimetric comparisons between DoseCHECK and the treatment planning system (TPS) were performed for clinical patient plans. Prostate IMRT, head and neck IMRT (HN), total body irradiation (TBI), and brain stereotactic radiotherapy (SRT) were evaluated. ResultThe DoseCHECK calculations agreed with the chamber and film measurements in the homogenous phantom. For heterogeneous phantom cases, the dose differences between DoseCHECK and TPS were within 3 %, except in air, in which large dose differences of 20 % were observed. In clinical patient plans, the median dose differences between the lung Dmean in TBI cases and the normal brain Dmean in brain SRT cases were significantly >3 %. For HN and brain SRT cases, the median target dose differences were >3 %. ConclusionOur results show that independent dose verification with the MC algorithm can detect systematic errors caused by the lack of heterogeneity correction in the TPS. In particular, MC-based independent dose verification is required for HN, TBI, and brain SRT cases in helical tomotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call