Abstract

Classification of micro calcification clusters is very essential for early detection of breast cancer from mammograms. In this paper, an improved support vector machine (SVM) scheme is proposed, where optimized decision making is introduced for effective and more accurate data classification. Experimental results on the well-known DDSM database have shown that the proposed method can significantly increase the performance in terms of F1 and Az measurements for the successful classification of clustered micro calcifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.