Abstract

Water is the most essential resource for the biotic and abiotic components of an ecosystem. Any change in the quality of this water may cause adverse impact on the ecosystem. Hexavalent chromium is one such important pollutant that gets exposed in the water mainly through anthropogenic processes. Adsorption is considered to be an effective, economic and easiest method for remediation of such pollutants. Amongst the innumerable adsorbents available, biopolymers fetch the interest due to its cost effectiveness, efficiency and biocompatibility. But, the mechanical strength and workability of such biopolymers makes it unfit to use as an adsorbent. To improve these drawbacks, synthesis of biopolymeric composites become the need of the hour. So, an attempt was made here to synthesize metal cross-linked binary bio-composites using Alginate and Chitosan polymer matrix. Synthesized bio-composites were characterised with the aid of FTIR, XPS, Thermal analysis, SEM with EDAX and subjected for hexavalent chromium removal from water. Analysis of variance (ANOVA) with 95 % confidence intervals was used to assess the significance of independent variables and their interactions. Adsorption studies were done using batch process and to achieve greater sorption, various influencing parameters were optimized one by one. While investigating one parameter, other parameters were kept unaltered. Optimization was done for the parameters like contact time, dosage of the adsorbent, pH of the medium and presence of co-ions. Contact time and dosage for all the composites was 30 mins and 0.1 g respectively. Amongst the composites, Zirconium loaded binary composite possess high sorption capacity of around 14.8 mg/g. While Calcium and Iron loaded composites exhibit sorption capacity of around 9.8 mg/g and 10.4 mg/g respectively. Presence of other co-ions in the medium doesn't affect the sorption process. Isothermal studies infer the adsorption follows Langmuir model and thermodynamic parameters concludes the endothermic and randomness of the adsorption. The bio-composites can be recycled and used upto three cycles. Field trial was conducted and the composites work well in such conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call