Abstract

Capturing the underlying structural causal relations represented by Directed Acyclic Graphs (DAGs) has been a fundamental task in various AI disciplines. Causal DAG learning via the continuous optimization framework has recently achieved promising performance in terms of accuracy and efficiency. However, most methods make strong assumptions of homoscedastic noise, i.e., exogenous noises have equal variances across variables, observations, or even both. The noises in real data usually violate both assumptions due to the biases introduced by different data collection processes. To address the heteroscedastic noise issue, we introduce relaxed implementable sufficient conditions and prove the identifiability of a general class of SEM subject to those conditions. Based on the identifiable general SEM, we propose a novel formulation for DAG learning which accounts for the noise variance variation across variables and observations. We then propose an effective two-phase iterative DAG learning algorithm to address the increasing optimization difficulties and learn a causal DAG from data with heteroscedastic variables noise under varying variance. We show significant empirical gains of the proposed approaches over state-of-the-art methods on both synthetic data and real data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call