Abstract

Halogenated α, β-unsaturated C4-dicarbonyl (X-BDA), a novel family of high-toxicity ring cleavage products, is produced during the disinfection of phenolic compounds. The technique of electrocatalytic hydrodehalogenation (ECH) is efficient in rupturing carbon-halogen bonds and generating useful chemicals. This study used first principles to examine the ECH reaction mechanism of X-BDA and the subsequent hydrogenation reaction of the toxic derivative BDA over the 1 T′-MoS2/Ti3C2T2 (T = O, OH, F) catalysts. The catalytic activity of Ti3C2T2 (T = O, OH, F) catalysts decreases gradually with -OH, -F, -O functional group. The loading of 1 T′-MoS2 onto the Ti3C2T2 surface improves the stability and selectivity of Ti3C2T2. In particular, 1 T′-MoS2/Ti3C2(OH)2 is most conducive to the ECH reaction of X-BDA via a direct-indirect continuous reduction process. It exhibits excellent removal capability towards Cl-BDA, with decreasing reactivity in the order of the Cl-, Br-, and I-BDA. The material offers a solution to the challenging dechlorination issue. The dehalogenated product BDA can be hydrogenated to produce 1,4-butanedial, 1,4-butanediol, and 1,4-butenediol. Three valuable chemicals can be obtained by exerting an applied potential of − 0.65 V. This work suggests that the formation of heterojunction catalyst may lead to new strategies to improve ECH for environmental remediation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call