Abstract

Blind image deblurring has been a challenging issue due to the unknown blur and computation problem. Recently, the matrix-variable optimization method successfully demonstrates its potential advantages in computation. This paper proposes an effective matrix-variable optimization method for blind image deblurring. Blur kernel matrix is exactly decomposed by a direct SVD technique. The blur kernel and original image are well estimated by minimizing a matrix-variable optimization problem with blur kernel constraints. A matrix-type alternative iterative algorithm is proposed to solve the matrix-variable optimization problem. Finally, experimental results show that the proposed blind image deblurring method is much superior to the state-of-the-art blind image deblurring algorithms in terms of image quality and computation time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call