Abstract
The presence of ear rots in maize caused by Aspergillus flavus that are also associated with the production of aflatoxins has evolved into an increasing problem over the last few years. Since no commercial biological control products are still available to control A. flavus in maize in Europe, this study targets to the evaluation of six biopesticides/biostimulants (Botector®, Mycostop®, Serenade Max®, Trianum®, Vacciplant®, and zeolite) for the control of A. flavus and the derived aflatoxins in in vitro and maize field bioassays. Mycostop®, Serenade Max®, Vacciplant®, and zeolite reduced significantly A. flavus conidia production by 38.8–63.1%, and most of them were able to reduce aflatoxin B1 (AFB1) production in laboratory studies. Mycostop®, Trianum®, and Botector® were effective in reducing AFB1, in vitro. In the field, Mycostop® and Botector® treatments resulted in significant reduction of the disease severity (16.5 and 21.9%, respectively) and decreased significantly AFB1 content in maize kernels by 43.05 and 43.09%, respectively. For the first time, these results demonstrated the potential of commercial non-chemical products to suppress disease symptoms and aflatoxin content caused by A. flavus in maize under laboratory and field conditions.
Highlights
Mycotoxins are toxic metabolites of low molecular weight that are produced by several species of mycotoxigenic fungi
Mycostop® and Botector® treatments resulted in significant reduction of the disease severity (16.5 and 21.9%, respectively) and decreased significantly aflatoxin B1 (AFB1) content in maize kernels by 43.05 and 43.09%, respectively. These results demonstrated the potential of commercial non-chemical products to suppress disease symptoms and aflatoxin content caused by A. flavus in maize under laboratory and field conditions
Infection of maize by aflatoxigenic strains of A. flavus is favored by hot climatic conditions and the risk of aflatoxin biosynthesis is increased due to the dry and warm climate conditions combined with inappropriate storage conditions (Chulze, 2010)
Summary
Mycotoxins are toxic metabolites of low molecular weight that are produced by several species of mycotoxigenic fungi. A plethora of mycotoxins which are differing in their chemical structure have been identified, but all of them have the same common characteristics; they contaminate food and animal feed causing chronic toxicity and lead to more than 25% of agricultural products that are discarded annually (Bennett and Klich, 2003; CAST, 2003). One of the most common mycotoxigenic fungi is Aspergillus flavus, a predominant plant pathogen of maize (Zea mays L.) causing destructive plant diseases commonly known as ear rots and capable of contaminating maize kernels with aflatoxins (AFs). Biological Control of Aflatoxins in Maize quality and safety of the population feed. They are in first place (44%) as a reason for rejecting imports of various products in EU (RASFF/Rapid Alert System For Food and Feed for the European Union, 2008). Infection of maize by aflatoxigenic strains of A. flavus is favored by hot climatic conditions and the risk of aflatoxin biosynthesis is increased due to the dry and warm climate conditions combined with inappropriate storage conditions (Chulze, 2010)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.