Abstract

BackgroundMalaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience. Conventional larviciding is restricted by high operational costs and inadequate knowledge of mosquito-breeding habitats in rural settings that might be overcome by the juvenile hormone analogue, Pyriproxyfen (PPF). This study assessed the potential for Anopheles arabiensis to pick up and transfer lethal doses of PPF from contamination sites to their breeding habitats (i.e. autodissemination of PPF).MethodsA semi-field system (SFS) with four identical separate chambers was used to evaluate PPF-treated clay pots for delivering PPF to resting adult female mosquitoes for subsequent autodissemination to artificial breeding habitats within the chambers. In each chamber, a tethered cow provided blood meals to laboratory-reared, unfed female An. arabiensis released in the SFS. In PPF-treated chambers, clay pot linings were dusted with 0.2 – 0.3 g AI PPF per pot. Pupae were removed from the artificial habitats daily, and emergence rates calculated. Impact of PPF on emergence was determined by comparing treatment with an appropriate control group.ResultsMean (95% CI) adult emergence rates were (0.21 ± 0.299) and (0.95 ± 0.39) from PPF-treated and controls respectively (p < 0.0001). Laboratory bioassay of water samples from artificial habitats in these experiments resulted in significantly lower emergence rates in treated chambers (0.16 ± 0.23) compared to controls 0.97 ± 0.05) (p < 0.0001). In experiments where no mosquitoes introduced, there were no significant differences between control and treatment, indicating that transfer of PPF to breeding sites only occurred when mosquitoes were present; i.e. that autodissemination had occurred. Treatment of a single clay pot reduced adult emergence in six habitats to (0.34 ± 0.13) compared to (0.98 ± 0.02) in the controls (p < 0.0001), showing a high level of habitats coverage amplification of the autodissemination event.ConclusionThe study provides proof of principle for the autodissemination of PPF to breeding habitats by malaria vectors. These findings highlight the potential for this technique for outdoor control of malaria vectors and call for the testing of this technique in field trials.

Highlights

  • Malaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience

  • This study reports on the first experiments undertaken in a large semi-field system in Tanzania, evaluating the potential of PPF autodissemination for control of An. arabiensis and probably other African malaria vectors

  • In the six replicates carried out, an average proportion of adult emerged per experimental replicate was 0.95 ± 0.39) in the control group compared to 0.21 ± 2.99) in the PPF treatments (p < 0.0001) (Figure 2C)

Read more

Summary

Introduction

Malaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience. The World Health Organization (WHO) continues to recommend a range of combined strategies for malaria prevention with vector control, primarily through the use of insecticide-treated bed nets (LLINs) and indoor residual insecticide spraying (IRS), a key component of those strategies [2,3,4]. LLINs and IRS target only vectors that are active indoors, and even in areas where this has been successful, malaria transmission by outdoor biting and outdoor resting vector populations of Anopheles arabiensis and Anopheles funestus remains a serious public health challenge [9,10]. Effective sustainable tools or approaches with proven impact on outdoor biting and resting vector populations have yet to be developed

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call