Abstract

We investigate the bending characteristics of solid-core photonic bandgap fibers (SC-PBGFs) aiming to achieve large mode area (LMA) and effectively single-mode operation with a practically allowable bending radius for high-power Yb-doped fiber lasers and amplifiers. Through detailed numerical simulations based on the finite element method (FEM), we evaluate the impacts of the order of photonic bandgap on the bending performance and point out the limits of core size enlargement in the SC-PBGFs with a 1-cell core structure due to the increment of bending loss. In addition, under practical constraints, we find that the SC-PBGFs having a 7-cell core can achieve sufficient differential bending loss between the fundamental mode and the higher-order modes and a much larger effective area limit as compared with previously-reported index-guiding LMA fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call