Abstract
With the gradual depletion of natural gold ore, waste printed circuit boards (WPCBs) have become one of the most attractive alternatives to gold ore. Here, a series of quaternary phosphonium adsorbents with a large size were successfully synthesized by adjusting the number of functional groups and carbon chain length of functional monomers, which can be used for selective recovery of gold(III) from WPCBs leaching solution. The quaternary phosphonium adsorbent (PS-TEP) prepared by the nucleophilic substitution reaction between triethyl phosphine with the smallest volume and chloromethylated polystyrene (PS-Cl) exhibited the best gold loading capacity (617.90 mg g−1). The adsorption mechanism of gold(III) on PS-TEP surface mainly involves anion exchange between AuCl4− and Cl− in the adsorbent. The charge level of the H atom closest to –CH2–P+ group directly determines the strength of the interaction between the adsorbent and the gold ion. Multiwfn and VMD programs visually confirm the weak interaction between PS-TEP+ and AuCl4−. After 5 adsorption-stripping cycles, the adsorption rate of gold(III) in solution remained at about 99 %. In addition, PS-TEP exhibited good gold(III) selectivity in both simulated and actual WPCBs gold leaching solutions. These results indicate that the large-particle PS-TEP with high capacity is suitable for selective gold recovery from WPCBs leaching solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.