Abstract

Metal-organic frameworks (MOFs) as selectivity regulators for catalytic reactions have attracted much attention, especially MOFs and metal nanoparticle (NP) shelled structures, e.g., MOFs@NPs@MOFs. Nevertheless, making hydrophilic MOF shells for gathering hydrophobic reactants is challenging. Described here is a new and viable approach employing conjugated micro- and mesoporous polymers with iron(III) porphyrin (FeP-CMPs) as a new shell to fabricate MIL-101@Pt@FeP-CMP. It is not only hydrophobic and porous for enriching reactants, but also possesses iron sites to activate C=O bonds, thereby regulating the selectivity for cinnamyl alcohol in the hydrogenation of cinnamaldehyde. Interestingly, MIL-101@Pt@FeP-CMPsponge can achieve a high turnover frequency ( 1516.1 h-1 ), with 97.3 % selectivity for cinnamyl alcohol at 97.6 % conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.