Abstract

Wastewater treatment by adsorption onto activated carbon is effective because it has a variety of benefits. In this work, activated carbon prepared from rice husk by chemical activation using zinc chloride was utilized to reduce chemical oxygen demand from wastewater. The as-prepared activated carbon was characterized by scanning electron microscope, Fourier transform infrared spectroscopy and nitrogen adsorption/desorption analysis. The optimum conditions for maximum removal were achieved by studying the impact of various factors such as solution pH, sorbent dose, shaking time and temperature in batch mode. The results displayed that the optimum sorption conditions were achieved at pH of 3.0, sorbent dose of 0.1 g L−1, shaking time of 100 min and at room temperature (25 °C). Based on the effect of temperature, the adsorption process is exothermic in nature. The results also implied that the isothermal data might be exceedingly elucidated by the Langmuir model. The maximum removal of chemical oxygen demand by the activated carbon was 45.9 mg g−1. The kinetic studies showed that the adsorption process follows a pseudo-first order model. The findings suggested that activated carbon from rice husk may be used as inexpensive substitutes for commercial activated carbon in the treatment of wastewater for the removal of chemical oxygen demand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call