Abstract

Spent bleaching earth (SBE) as anindustrious solid rubbish seriously causes the environmental pollution problem. The resourceful utilization of SBE has become increasingly important. In this work, silicon and carbon ingredients derived from SBE were coincidently employed to synthesize a 4A zeolite/carbon composite molecular sieve (4A/CMS). Therein, the graphite carbon components in the form of porous lamellar scattering among the interlayer, surface, and periphery of 4A zeolite promote the rate of mass transfer for the lipophilic gas, which can effectively improve the adsorption property for the volatile organic compounds. The obtained 4A/CMS has large specific surface area, hierarchical pore structure, satisfactory adsorption capacity, and regeneration performance, and its equilibrium adsorption capacity of p-xylene can achieve 209.57mg·g-1. The pseudo-first-order rate equation is appropriate for the adsorption kinetics. In the end, the formation mechanism of 4A/CMS was illuminated in detail. □ Spent bleaching earth (SBE) as anindustrious solid rubbish were utilized resourcefully. Silicon and carbon ingredients from SBE were coincidently employed to synthesize 4A/CMS. Graphitic carbon with hierarchical pore promoted the rate of mass transfer of organic gas. 4A/CMS exhibited excellent adsorption capacity and regeneration performance of p-xylene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call