Abstract
The “3-in-1 type” biopolymer composite (chitosan/montmorillonite clay/biosorbent) hydrogels were produced and used as adsorbents for Cr(VI) ion. Na-Montmorillonite (NaMMT) clay was modified with Spirulina (Sp) biosorbent by using lyophilization based “cryoscopic expansion” (C-XP) method. The Sp immobilized MMT (SpMMT) clay containing hydrogels were found to have an open/extended form of Sp structure on their pores’ walls, presenting all possible receptor groups for adsorption of Cr(VI) ions. SpMMT loaded hydrogels showed higher adsorption capacities than NaMMT loaded ones. The physically crosslinked hydrogel including only 1% SpMMT (1SpM-H) clay exhibited 150% higher adsorption capacity as compared to neat chitosan hydrogel even in 50 ppm Cr(VI) solution. The same composite hydrogel was found to adsorp about 780% Cr(VI) with respect to the clay’s weight while individual uses of Sp and MMT can remove only about 4.80 and 0.36% Cr(VI) with respect to their weights. The pseudo-first order model was found to be the most suitable for the kinetic data of NaMMT loaded hydrogels while that of SpMMT containing hydrogels followed the pseudo-second order kinetics. The isotherm data of all the hydrogels exhibited a better fit to the Freundlich and Sips model. The maximum adsorption capacity (3333 mg g−1) calculated by Sips model was achieved via the hydrogel having 1% SpMMT which is in good agreement with the experimental kinetic data. The highest adsorption with the lowest amount of SpMMT clay could be attributed to its looser Sp network structure whose functional groups are in long-distance, releasing more adsorption sites for the Cr(VI). The highest compression modulus and toughness were also obtained with the 1SpM-H hydrogel which is probably due to increased physical and reversible interactions between chitosan molecules and SpMMT clay layers at optimum clay loading (1%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.