Abstract

Adaptive virtual queue (AVQ) algorithm is an effective method aiming to achieve low loss, low delay and high-link utilisation at the link. However, it is difficult to guarantee fast response, strong robustness and good trade-off over a wide range of network dynamics. The authors propose a stabilising active queue management (AQM) algorithm – effective-AVQ, as an extension of AVQ, to improve the responsiveness and robustness of the transmission control protocol (TCP)/AQM system. Specifically, a proportional integral derivative (PID) neuron is introduced to tune the virtual link capacity dynamically. Also we derive the parameter self-tuning mechanism for the PID neuron from the Hebbian learning rule and gradient descent approach. The stability condition of the closed-loop system is presented based on the time-delay control theory. The performance of effective-AVQ is validated in the NS2 platform. Simulation results demonstrate that effective-AVQ outperforms AVQ in terms of steady-state and transient performance. It achieves fast response, expected link utilisation, low queue size and small delay jitter, being robust against dynamic network changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call