Abstract

The effective action of a Higgs theory should be gauge-invariant. However, the quantum and/or thermal contributions to the effective potential seem to be gauge-dependent, posing a problem for its physical interpretation. In this paper, we identify the source of the problem and argue that in a Higgs theory perturbative contributions should be evaluated with the Higgs fields in the polar basis, not in the Cartesian basis. Formally, this observation can be made from the derivation of the Higgs theorem, which we provide. We show explicitly that, properly defined, the effective action for the Abelian Higgs theory is gauge-invariant to all orders in perturbation expansion when evaluated in the covariant gauge in the polar basis. In particular, the effective potential is gauge-invariant. We also show the equivalence between the calculations in the covariant gauge in the polar basis and the unitary gauge. These points are illustrated explicitly with the one-loop calculations of the effective action. With a field redefinition, we obtain the physical effective potential. The SU(2) non-Abelian case is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.