Abstract

An effective action is obtained for the area and mass aspect of a thin shell of radiating self-gravitating matter. On following a mini-superspace approach, the geometry of the embedding space-time is not dynamical but fixed to be either Minkowski or Schwarzschild inside the shell and Vaidya in the external space filled with radiation. The Euler-Lagrange equations of motion are discussed and shown to entail the expected invariance of the effective Lagrangian under time reparametrization. They are equivalent to the usual junction equations and suggest a macroscopic quasi-static thermodynamic description.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.