Abstract
Since the introduction of attenuated total reflection (ATR) spectroscopy for the characterization of materials, attempts have been made to relate the measured reflectivity (R) to the absorption coefficient (α) of the absorbing material of interest. The common approach is limited to the low absorption case under the assumption R∼exp(-αde), where de is an effective thickness, which is evaluated for the lossless case. In this Letter, a more detailed derivation leads to R=exp(-βdp/2), enabling the definition of an ATR-effective absorption coefficient β and the penetration depth dp of the electric field in the absorbing material. It is found that β∼4πε2/λ, where ε2 is the imaginary part of the complex dielectric function of the absorbing material, and λ is the wavelength. An alternative formulation is R=exp(-αdef), where def is a generalized effective thickness for arbitrary strength of absorption which reduces to de in the low absorption limit. The experimental data for water, the biopolymer chitosan, and soda-lime glass prove the reliability of the ATR-effective absorption coefficient in the infrared range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.