Abstract

Polycyclic aromatic hydrocarbons (PAHs), which are generated by heat treatment and smoke curing of meat, pose a risk to human health. At present, the determination of these unwanted contaminants requires costly, time-consuming chemical analysis of smoked meat. An alternative is effect-directed high-throughput bioassays, which could also be used as a pre-screening method. The authors recently adapted the in vitro chemical-activated luciferase gene expression (CALUX) assay as a rapid, sensitive, and inexpensive screening technique for compounds such as dioxins, polychlorinated biphenyls, and PAHs. The aim of the present study was to apply a practical approach under realistic conditions. Custom-made meat samples produced under defined conditions with different PAH levels were analysed using this bioassay and gas chromatography-mass spectrometry (GC/MS) to determine the influence of different smoking conditions (temperature and duration) on PAH levels. It was found that cold smoking for up to 6 h did not result in strong PAH contamination, whereas hot (65°C) and longer smoking times caused a considerable increase in both the bioassay response and the levels of 31 individually determined PAHs. The response in the effect-based bioassay was in good agreement with the values of chemical analysis. The bioassay made it possible to determine accurately the degree of contamination. The results show that this assay is suitable for high-throughput screening for unknown levels of toxicologically relevant PAHs in meat samples and is sensitive enough to differentiate between different PAH levels generated under various smoking conditions. Effect-based screening techniques, therefore, provide a new instrument for official food monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.