Abstract
We investigated the effect of the Ce substitution in <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">${\hbox{Bi}}_{2}{\hbox{Te}}_{3}$</tex></formula> on its electronic, magnetic, and thermoelectric properties in first-principles using the precise full-potential linearized augmented plane-wave (FLAPW) method. Results revealed that <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\hbox{CeBiTe}}_{3}$</tex> </formula> is a magnetic semiconductor with a very narrow energy band gap in the spin-polarized phase within <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\hbox{GGA}}+{\hbox{U}}$</tex> </formula> . The calculation of thermoelectric coefficients, which is determined by utilizing the Boltzmann’s equation in a constant relaxation-time approach using the FLAPW wave-functions, shows that the Ce substitution causes a reduction of the thermoelectric power, as a result of the change in Seebeck coefficient and electrical conductivity due to the strongly localized <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$4f$</tex></formula> bands and the reduced band gap. The maximum figure of merit ZT is found to be about 0.29 at 450 K, which is in good agreement with the experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.