Abstract

AbstractSeamounts are ubiquitous on the oceanic plate; those situated near convergent margins will eventually undergo subduction. Using six prestack depth migrated MCS profiles transecting the Aleutian Trench, we investigate deeply buried seamounts offshore Kodiak Island, within 145–155°W and 55–58°N. A distinct sedimentary horizon exists in all six seismic profiles, at or above the average height of seamounts, which appears to be the preferred structural detachment zone. Where drilled, this horizon contains gravel‐sized debris interpreted to be ice rafted and marks the onset of intensification of Northern Hemisphere glaciation at ~2.7 Ma. Beneath this horizon, sediments prior to the Surveyor Fan development were deposited, all or the majority of these sediments will eventually be subducted. Despite the subducted seamounts being deeply buried, these features cause enhanced surface slope of the accretionary prism. Our observations lead us to propose a model for the stages of subduction for deeply buried seamounts. These stages include the following: (1) Prior to subduction, the protothrust zone undergoes enhanced shortening, (2) frontal thrust steepening and enhanced backthrusting occurs during subduction with a potential décollement step down seaward and a steeping outward of the deformation front to the limit of the protothrust zone, and (3) further subduction results in a pattern of uplift farther into the wedge resulting in enhanced out‐of‐sequence thrusting and persistence of the more seaward deformation front position. This pattern is distinct from the dominance of embayments and effective removal of prism material during seamount subduction described along margins with less deeply buried edifices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.