Abstract

Amorphous calcium phosphate (ACP) plays an important role in the body and can be used as an intermediate phase for forming calcium phosphates. All ACPs are thermodynamically unstable compounds, unless stored in dry conditions or at low temperature (-18oC), and spontaneously undergo transformation to crystalline calcium phosphates (CaP). This work will investigate the influence of drying on the stability of ACP. ACPs powders were prepared by wet synthesis; mixing solution made of Ca (NO3)2∙4H2O and 30% ammonia with (NH4)2HPO4 and (NH4)2CO3 solution at room temperature. The suspension was stirred, filtered and washed several times with deionized water containing ammonia. ACP samples were dried at different conditions and with different drying agents (DA). XRD and FTIR spectra showed poorly crystallinity powders after drying. Some FTIR spectra indicated residual organic compounds from drying. The Rietveld’s method and Schrrer’s relationship estimated the particle size (0.5 – 20 nm) of ACP. Thermogravimetry (TG) revealed that the moisture (7% – 25%) is released upon drying, and the drying agents have no significant effect on. The drying methods are ordered to show which the most effective for removing moisture. By changing the drying conditions, it is a possible to obtain poorly crystalline ACPs with different particle size and moisture content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.