Abstract

The effect of upstream injection by means of continuous Air Jet Vortex Generators (AJVGs) on a shock wave turbulent boundary layer interaction is experimentally investigated. The baseline interaction is of the impinging type, with a flow deflection angle of 9.5?, a Mach number Me = 2.3, and a momentum thickness based Reynolds number of 5,000. Considered are the effects of the AJVGs on the upstream boundary layer flow topology and on the spatial and dynamical characteristics of the interaction. To this aim, Stereoscopic Particle Image Velocimetry has been employed, in addition to hot-wire anemometry (HWA) for the investigation of the dynamical characteristics of the reflected shock. It is shown that the AJVGs significantly modify the three-dimensionality of the upstream boundary layer. Overall, the AJVGs cause a reduction of the separation bubble length and height. In addition, the energetic frequency range of the reflected shock is increased by approximately 50%, which is in qualitative agreement with the smaller separation bubble size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call