Abstract

Although Piper sarmentosum (PS) is known to possess the antidiabetic properties, its efficacy towards diabetic cardiovascular tissues is still obscured. The present study aimed to observe the electron microscopic changes on the cardiac tissue and proximal aorta of experimental rats treated with PS extract. Thirty-two male Sprague-Dawley rats were divided into four groups: untreated control group (C), PS-treated control group (CTx), untreated diabetic group (D), and PS-treated diabetic group (DTx). Intramuscular injection of streptozotocin (STZ, 50 mg/kg body weight) was given to induce diabetes. Following 28 days of diabetes induction, PS extract (0.125 g/kg body weight) was administered orally for 28 days. Body weight, fasting blood glucose, and urine glucose levels were measured at 4-week interval. At the end of the study, cardiac tissues and the aorta were viewed under transmission electron microscope (TEM). DTx group showed increase in body weight and decrease in fasting blood glucose and urine glucose level compared to the D group. Under TEM study, DTx group showed lesser ultrastructural degenerative changes in the cardiac tissues and the proximal aorta compared to the D group. The results indicate that PS restores ultrastructural integrity in the diabetic cardiovascular tissues.

Highlights

  • Epidemiological studies show that the high prevalence mortality among diabetic patients is due to the cardiovascular complications that are involved in diabetes mellitus (DM)

  • There were no significant differences in body weight, fasting blood glucose, and urine glucose, levels in all the groups prior to the STZ injection

  • A significant decrease (P < 0.05) in body weight was observed in the diabetic groups following 4 weeks of DM induction

Read more

Summary

Introduction

Epidemiological studies show that the high prevalence mortality among diabetic patients is due to the cardiovascular complications that are involved in diabetes mellitus (DM). Data depict that more than 75% of all hospitalizations in diabetic subjects are attributed to the cardiovascular complications [1]. Diabetic cardiac dysfunction is independent of any vascular compliance, it can be associated with degenerative vascular changes such as thickening of endothelium basal lamina and ultrastructural damages in the diabetic aorta [3, 4]. Chronic hyperglycemia is a complex, progressive disease which leads to increase in oxidative stress. The increase in oxidative stress results from increase in formation of free radicals and decrease in the antioxidant defense activity [5]. Experimental and clinical studies have suggested that diabetic state itself may be responsible for developing cardiac dysfunction and atherosclerosis [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call